Automotive radar sensors provide valuable information for advanced driving assistance systems (ADAS). Radars can reliably estimate the distance to an object and the relative velocity, regardless of weather and light conditions. However, radar sensors suffer from low resolution and huge intra-class variations in the shape of objects. Exploiting the time information (e.g., multiple frames) has been shown to help to capture better the dynamics of objects and, therefore, the variation in the shape of objects. Most temporal radar object detectors use 3D convolutions to learn spatial and temporal information. However, these methods are often non-causal and unsuitable for real-time applications. This work presents RECORD, a new recurrent CNN architecture for online radar object detection. We propose an end-to-end trainable architecture mixing convolutions and ConvLSTMs to learn spatio-temporal dependencies between successive frames. Our model is causal and requires only the past information encoded in the memory of the ConvLSTMs to detect objects. Our experiments show such a method's relevance for detecting objects in different radar representations (range-Doppler, range-angle) and outperform state-of-the-art models on the ROD2021 and CARRADA datasets while being less computationally expensive. The code will be available soon.
translated by 谷歌翻译
深度强化学习已经证明了通过梯度下降调整的神经网络的潜力,以解决良好的环境中的复杂任务。但是,这些神经系统是缓慢的学习者,生产专门的药物,没有任何机制,无法继续学习培训课程。相反,生物突触可塑性是持久和多种多样的,并被认为在执行功能中起关键作用,例如工作记忆和认知灵活性,可能支持更高效和更通用的学习能力。受此启发的启发,我们建议建立具有动态权重的网络,能够不断执行自反射修改,这是其当前突触状态和动作奖励反馈的函数,而不是固定的网络配置。最终的模型,Metods(用于元优化的动力突触)是一种广泛适用的元强制学习系统,能够在代理策略空间中学习有效而强大的控制规则。具有动态突触的单层可以执行单次学习,将导航原则概括为看不见的环境,并表现出强大的学习自适应运动策略的能力,并与以前的元强化学习方法进行了比较。
translated by 谷歌翻译
视觉理解需要了解场景中对象之间的复杂视觉关系。在这里,我们寻求描述抽象视觉推理的计算需求。我们通过系统地评估现代深度卷积神经网络(CNNS)的能力来学习解决“综合视觉推理测试”(SVRT)挑战,是二十三个视觉推理问题的集合。我们的分析揭示了视觉推理任务的新型分类,这可以通过关系类型(相同的与空间关系判断)和用于构成基本规则的关系数量来解释。先前的认知神经科学工作表明,注意力在人类的视觉推理能力中发挥着关键作用。为了测试这一假设,我们将CNN扩展了基于空间和基于特征的注意力机制。在第二系列实验中,我们评估了这些注意网络学习解决SVRT挑战的能力,并发现所产生的架构在解决这些视觉推理任务中最艰难的架构。最重要的是,对个人任务的相应改进部分地解释了我们的新型分类法。总体而言,这项工作提供了视觉推理的粒度计算账户,并产生关于基于特征的与空间关注的差异需求的可测试神经科学预测,具体取决于视觉推理问题的类型。
translated by 谷歌翻译
深度神经网络在图像分类中Excel Excel,但它们对输入扰动的性能比人类感知更强。在这项工作中,我们可以通过在深卷积网络中纳入脑激发的经常性动态来探讨此缺点是否可以部分地解决。我们从神经科学的一个受欢迎的框架中获取灵感:“预测编码”。在分层模型的每层,生成反馈'预测'(即,重建)前一层中的活动模式。重建错误用于迭代地更新时间间隔内的网络的表示,并通过自然图像数据集来优化网络的反馈权重 - 一种无监督的培训形式。我们展示将此策略实施到两个流行的网络中,VGG16和高效网络,从而提高了对各种损坏和对抗的攻击的鲁棒性。我们假设其他前馈网络可以类似地受益于所提出的框架。为了在这种方向上促进研究,我们提供称为PRIGEIFY的基于开放的Pytorch的包,其可用于实施和研究预测编码动态在任何卷积神经网络中的影响。
translated by 谷歌翻译